

4WD Loader Tutorial

(ProcessNet General)

Copyright © 2020 FunctionBay, Inc. All rights reserved.

User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the

Republic of Korea and other countries and is provided under a license agreement that restricts

copying, disclosure, and use of such documentation. FunctionBay, Inc. hereby grants to the

licensed user the right to make copies in printed form of this documentation if provided on

software media, but only for internal/personal use and in accordance with the license agreement

under which the applicable software is licensed. Any copy made shall include the FunctionBay,

Inc. copyright notice and any other proprietary notice provided by FunctionBay, Inc. This

documentation may not be disclosed, transferred, modified, or reduced to any form, including

electronic media, or transmitted or made publicly available by any means without the prior

written consent of FunctionBay, Inc. and no authorization is granted to make copies for such

purpose.

Information described herein is furnished for general information only, is subjected to change

without notice, and should not be construed as a warranty or commitment by FunctionBay, Inc.

FunctionBay, Inc. assumes no responsibility or liability for any errors or inaccuracies that may

appear in this document.

The software described in this document is provided under written license agreement, contains

valuable trade secrets and proprietary information, and is protected by the copyright laws of the

Republic of Korea and other countries. UNAUTHORIZED USE OF SOFTWARE OR ITS

DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

Registered Trademarks of FunctionBay, Inc. or Subsidiary

RecurDyn is a registered trademark of FunctionBay, Inc.

RecurDyn/Professional, RecurDyn/ProcessNet, RecurDyn/Acoustics, RecurDyn/AutoDesign,

RecurDyn/Bearing, RecurDyn/Belt, RecurDyn/Chain, RecurDyn/CoLink, RecurDyn/Control,

RecurDyn/Crank, RecurDyn/Durability, RecurDyn/EHD, RecurDyn/Engine, RecurDyn/eTemplate,

RecurDyn/FFlex, RecurDyn/Gear, RecurDyn/DriveTrain, RecurDyn/HAT, RecurDyn/Linear,

RecurDyn/Mesher, RecurDyn/MTT2D, RecurDyn/MTT3D, RecurDyn/Particleworks I/F,

RecurDyn/Piston, RecurDyn/R2R2D, RecurDyn/RFlex, RecurDyn/RFlexGen, RecurDyn/SPI,

RecurDyn/Spring, RecurDyn/TimingChain, RecurDyn/Tire, RecurDyn/Track_HM,

RecurDyn/Track_LM, RecurDyn/TSG, RecurDyn/Valve

are trademarks of FunctionBay, Inc.

Edition Note

This document describes the release information of RecurDyn V9R4.

Table of Contents

Getting Started ... 5

Objective ... 5

Audience .. 5

Prerequisites ... 5

Procedures ... 5

Estimated Time to Complete ... 6

Opening the Model and Initializing ProcessNet 7

Task Objective .. 7

Estimated Time to Complete ... 7

Starting RecurDyn ... 8

Starting ProcessNet ... 9

Automating Contact Definition .. 11

Task Objective .. 11

Estimated Time to Complete ... 11

Understanding the Contacts to be Created .. 12

Creating the Base Application ... 13

Coding Using IntelliSense ... 15

Building and Running the Macro .. 17

Running a Simulation ... 19

Viewing the Results ... 19

Adding Additional Contacts ... 21

Repeating the Build, Simulation, and Viewing Processes 21

Adding a Dialog and Message Output .. 23

Task Objective .. 23

Estimated Time to Complete ... 23

Designing a Dialog .. 24

Defining the Behavior of the Dialog ... 30

Displaying the Dialog when Running the Macro ... 31

Test the Dialog Box ... 35

Automating Plot Creation ... 36

Task Objective .. 36

Estimated Time to Complete ... 36

Creating a Dialog .. 37

Plotting the Contact Forces ... 40

Improving the Contact Force Plot .. 44

Improving the Plot Formatting .. 49

Plotting the Total X, Y, and Z Contact Force .. 50

Converting VSTA Project into General Project 54

Task Objective .. 54

Estimated Time to Complete ... 54

Editing the VSTA code .. 55

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

5

Getting Started

Objective

In this tutorial, you will announce how to use ProcessNet by using Microsoft Visual Studio. This

tutorial will skip to explain the tutorial model used in this tutorial after because we assume that

you have processed the tutorial for ProcessNet by using VSTA. The four processes are:

▪ Use ProcessNet in Microsoft Visual Studio.

▪ Automate the creation of a series of contacts.

▪ Create a custom dialog box that provides user control of the contact.

▪ Automatically check the contact force outputs and only plot the contact forces that have a

non-zero output.

Audience

This tutorial is intended for intermediate users of RecurDyn who previously learned how to

create geometry, joints, and force entities. All new tasks are explained carefully.

Prerequisites

Before starting this tutorial, follow the ProcessNet 4WD Loader Tutorial (VSTA) of

RecurDyn Tutorial first.

Procedures

The tutorial is comprised of the following procedures. The estimated time to complete each

procedure is shown in the table.

Procedures Time (minutes)

Chapter

1

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

6

Opening model and Initializing ProcessNet 10

Automating Contact Definition 35

Adding a Dialog Box and Message Output 20

Automating Plot Creation 20

Total 85

Estimated Time to Complete

85 minutes

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

7

Opening the Model and Initializing

ProcessNet

Task Objective

Learn how to open a mechanical model in preparation for using ProcessNet and learn how to

use ProcessNet in Visual Studio.

Estimated Time to Complete

10 minutes

Chapter

2

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

8

Starting RecurDyn

To start RecurDyn and open the initial

model:

1. On your Desktop, double-click the

RecurDyn icon.

2. When the Start RecurDyn dialog box

appears, close this because you will not

be creating a new model but using an

existing one.

3. From the Quick Access Toolbar, click

Open.

4. Select the file

4WD_Loader_Start.rdyn. (The file

location:

<InstallDir>/Help/Tutorial/ProcessNet/General/4WDLoader).

5. Click Open.

Your model should look like the following.

The red lines are the hydraulic hoses that you will study.

Tip: Note that this view is shown in the (Render Each Object) viewing mode so that you can

see past the components on the bottom of the vehicle that might obscure your view of the hoses.

If you have difficulty seeing the hoses, you may want to check if you are in the Shaded viewing

mode. If so, change back to the Render Each Object viewing mode.

To save the initial model:

1. From the File menu, click Save As.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

9

2. Save the model different directory, because you cannot simulation in tutorial directory.

Starting ProcessNet

To start ProcessNet:

▪ ProcessNet General does not provide the Integrated Development Environment

(IDE). So, an IDE program needs to use it. If you don’t have the program, we recommend

using Visual Studio Expression version supported from Microsoft.

1. Execute the Visual Studio program.

▪ Visual Studio 2015 Expression version is used in this tutorial.

▪ It is not necessary that RecurDyn is Initializing ProcessNet performed in

ProcessNet VSTA.

2. From the File menu, select New, select Project.

3. When the New Project dialog window appears, select the Template that corresponds to

your version of RecurDyn.

Note: You must use the ProcessNet project that is compatible with your version of RecurDyn. If

the version is incorrect, then ProcessNet may not execute properly. The New Project dialog window

shows all the templates that are compatible with the installed version of RecurDyn.

▪ If the ProcessNet Template is shown as the above figure, continue to Step 4 below.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

10

▪ If the contents of the window are different, it may be because installation for the

Template does not process normally. If so, execute the Visual Studio again after the

following process.

a. Make a copy of the <RecurDyn Version> ProcessNet CSharp Project.zip file in

“<InstallDir>/Bin/Addin/ProcessNetManager” directory and place it in “C:\Users\<User

Name>\Documents\Visual Studio 2015\Templates\ProjectTemplates” directory.

b. Return to the Visual Studio application.

c. Repeat Step 2.

4. Select Templates->Visual C#->RecurDyn. And then, click the <RecurDyn Version>

ProcessNet CSharp Project icon.

5. 4D_Loader Project will be created with setting Name, Location, and Solution name as

shown in the above figure.

It contains four areas that let you:

▪ Project Editor Window – Write and edit code and design interface objects.

▪ Project Explorer – Get an organized view of your project and its files.

▪ Properties window – View and edit the properties of objects you selected in the

Project Editor window or Project Explorer

▪ Message window – View information that is generated as you build and run your

code, such as errors in your code.

You are now ready to start developing your first ProcessNet application.

Project Editor Window
Project Explorer

Project Window

Message Window

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

11

Automating Contact Definition

Task Objective

In two steps, you will create a ProcessNet application that creates a set of contacts between

the segments of the hoses. You will learn how to:

▪ Obtain the necessary information to create a RecurDyn entity.

▪ Use the ProcessNet help in RecurDyn.

▪ Work in the IDE to develop an application.

You will then run a simulation, view the results, update your application, and rerun the

simulation to observe the improved results.

Estimated Time to Complete

35 minutes

Chapter

3

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

12

Understanding the Contacts to be Created

Chapter 1 explained that each of the two hoses have 50 segments, as shown in the figure below.

The hoses are separated at the mounting locations at each end. The centerline of the vehicle

runs between the hoses. When articulation occurs one hose tends to be stretched more and the

other hose stretched less. With the curving of both hoses being different, they can make contact

in the middle of the span of the hose.

For your first ProcessNet application, you will create 11 contacts in the middle of the span of

the hoses as shown in the figure below.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

13

Creating the Base Application

You will now develop the application to create the hose contacts.

To create the base application:

1. In the Project Explorer window, double-click the file ThisApplication.cs to open it. The

content of the file appears in the Project editor window.

2. Copy the following code, and insert it after the HelloProcessNet() macro, as shown below.

You have now created a stub for your macro. If you were to compile your code now, the method

would show up in the list of available macros to run in RecurDyn, although it would not do

anything.

3. Next, insert the following variable declarations into the macro stub you just created (below

the opening curly brace, and above the closing curly brace):

public void ProcessNetTutorialCreateSolidContact()

Note that each variable is followed by an explanation, preceded with two forwards slashes, //. In

C#, any characters after these two slashes are ignored by the compiler and can be used as

comments in the code, for documentation purposes.

Note: Comments in C# can be preceded by two slashes, //.

4. After the variable declarations you just added, add the following for loop:

public void ProcessNetTutorialCreateSolidContact()
{
}

{
 int BodyNumStart = 20; // Start creating contacts with body 20
 int BodyNumEnd = 30; // Continue until body 30
 int BodyInterval = 51; // Interval between body number on hose 1
 // and corresponding body's number on
 // hose 2 is 51
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

14

The code placed inside the for loop will repeat. For the first loop, the index i will be equal to

BodyNumStart. Then i will be incremented by 1, and the next loop will execute. This will

repeat while the condition i ≤ BodyNumEnd is true.

Note that i is declared within the for loop statement, meaning that it will be valid only for code

within the for loop.

Also note that, in C#, the syntax i++ means to increment i by 1, or i = i + 1, after it has been

used in the loop.

Within the for loop you just added, insert the following code:

An explanation of this code block is as follows:

public void ProcessNetTutorialCreateSolidContact()
{

int BodyNumStart = 20; // Start creating contacts with body 20
int BodyNumEnd = 30; // Continue until body 30
int BodyInterval = 51; // Interval between body number on hose 1

// and corresponding body's number on
// hose 2 is 51

for (int i = BodyNumStart; i <= BodyNumEnd; i++)
{
}

}

public void ProcessNetTutorialCreateSolidContact()
{

int BodyNumStart = 20; // Start creating contacts with body 20
int BodyNumEnd = 30; // Continue until body 30
int BodyInterval = 51; // Interval between body number on hose 1

// and corresponding body's number on
// hose 2 is 51

for (int i = BodyNumStart; i <= BodyNumEnd; i++)
{
int j = i + BodyInterval; // j is the index for the

// corresponding bodies on hose #2
// Do the contact for corresponding bodies

IBody baseBody = model.GetEntity("BeamBody" + i.ToString()) as IBody;
IGeometry baseGeom = baseBody.GetEntity("HollowCircularBeam1") as IGeometry;
IBody actionBody = model.GetEntity("BeamBody" + j.ToString()) as IBody;
IGeometry actionGeom= actionBody.GetEntity("HollowCircularBeam1") as IGeometry;
IContactSolidContact solidContact= model.CreateContactSolidContact("solidContact"

 + i.ToString(), baseGeom, actionGeom);
}

}

int j = i + BodyInterval; // j is the index for the
// corresponding bodies on hose #2

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

15

In the code above:

i is the index for the bodies in hose 1, and j is the index for the bodies in hose 2.

To make sure that the bodies correspond, the value of j will always be equal to i +

bodyInterval.

Also, note that j is being declared inside the for loop, and therefore will not be valid outside the

for loop.

The code above retrieves the body that we want to use as the base body by its name:

The + character is used to join two strings.

The ToString() method is used to convert the integer value of i to a string.

▪ Therefore, the GetEntity() method looks for bodies by the names “BeamBody20”,

“BeamBody21”, etc.

Because the GetEntity() method can return any generic entity, the call must be explicitly casted

as IBody to tell the compiler what type to return.

The above code retrieves geometry of the base body by its name, “HollowCircularBeam1”.

This geometry will be used to create the solid contact.

The previous two steps are repeated for the action body.

Finally, the command above creates the solid contact, naming it “solidContact20” (or

“solidContact21”, “solidContact22”, etc.). The command uses the base and action geometry we

defined in the previous steps.

Coding Using IntelliSense

Up to this point, you may have been cutting and pasting code directly from this tutorial. Once

you start writing your own macros, however, you will be manually typing in code. A feature of

IBody baseBody
 = model.GetEntity("BeamBody" + i.ToString()) as IBody;

IGeometry baseGeom
 = baseBody.GetEntity("HollowCircularBeam1") as IGeometry;

IContactSolidContact solidContact
 = model.CreateContactSolidContact("solidContact"
 + i.ToString(), baseGeom, actionGeom);

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

16

the Visual Studio which helps you code faster is called IntelliSense, and you will now explore how

to take advantage of this while also accomplishing the following task.

If compiled, the macro should now create a contact with the default properties. But the default

stiffness and damping values for the Solid Contact are too high. You will now set these contact

parameters to lower values.

To modify the contact parameters using IntelliSense:

1. After the last line of code, you entered in the previous steps, begin typing the character

 ‘s’. You should see a popup list display as shown below:

The list contains all of the valid things you could possibly type next, including names of variables

accessible at this part of the code, methods you could call, etc.

From the IntelliSense list, locate solidContact.

2. Select solidContact by double-clicking on it or by pressing Enter.

Next, type the period character (.).

3. Select ContactProperty from the IntelliSense list.

4. Continue this procedure until you have typed:

5. Repeat this procedure to type the next line:

In the end, the method should appear in its entirety as shown below:

solidContact.ContactProperty.StiffnessCoefficient.Value =1000;

solidContact.ContactProperty.DampingCoefficient.Value = 0.1;

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

17

There should be no errors or warnings in the Error List window at the bottom of the IDE window.

Building and Running the Macro

To build and run the macro:

1. If there are any errors or warnings, check the listing and make any corrections.

2. From the Build menu, select Build Solution.

3. Return to RecurDyn, and from the ProcessNet(General) group in the Customize tab,

click Run.

public void ProcessNetTutorialCreateSolidContact()
{

int BodyNumStart = 20; // Start creating contacts with body 20
int BodyNumEnd = 30; // Continue until body 30
int BodyInterval = 51; // Interval between body number on hose 1

 // and corresponding body's number on
// hose 2 is 51

for (int i = BodyNumStart; i <= BodyNumEnd; i++)
{

int j = i + BodyInterval; // j is the index for the
// corresponding bodies on hose #2
//Do the contact for corresponding bodies

IBody baseBody = model.GetEntity("BeamBody" + i.ToString()) as IBody;
IGeometry baseGeom = baseBody.GetEntity("HollowCircularBeam1") as IGeometry;
IBody actionBody = model.GetEntity("BeamBody" + j.ToString()) as IBody;
IGeometry actionGeom = actionBody.GetEntity("HollowCircularBeam1") as IGeometry;
IContactSolidContact solidContact = model.CreateContactSolidContact("solidContact"
+ i.ToString(), baseGeom, actionGeom);

solidContact.ContactProperty.StiffnessCoefficient.Value =1000;
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;

}
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

18

4. Load the DLL file built before in ProcessNet Manager Window.

5. Select ProcessNetTutorialCreateSolidContact from the list of macros.

Its name is loaded in the field next to the Run button.

6. Click Run.

Eleven contacts are added to your model.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

19

Running a Simulation

You are now ready to run a simulation.

To run a simulation:

1. From the Simulation Type group in the

Analysis tab, click Dynamic/Kinematic.

2. Set the simulation to run for 2.0 seconds

with 300 steps and a Plot Multiplier Step

Factor of 5 as shown in the figure on the

right.

3. Click Simulate. The simulation will run in 3-

4 minutes, depending on the speed of your

computer.

Viewing the Results

To view the results:

1. Set up the model so you are looking at a bottom view of the vehicle with the Render Each

shading mode turned on.

2. In the Simulation toolbar, in the

Animation Control group, click the

Play button.

At the end of the simulation the hoses

are deformed as shown in the figure to

the right.

3. Turn on the action force display of all of the contacts by:

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

20

▪ Selecting the first Solid contact in the Database Window.

▪ While holding down the Shift key, select the last Solid contact in the Database

Window.

▪ Click the right mouse button and select Property.

▪ In the dialog box that appears, click on the Solid tab. At the bottom of the dialog box

use the pulldown menu to set the Force Display to Action.

▪ Click OK.

4. Play the animation again and you will see that the forces are slightly erratic.

As you watch the motion you can see that the hoses slide with respect to each other. It may not

be enough to have contact between corresponding segments. Contact with neighboring

segments may also be required. This is shown in the figure below.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

21

Adding Additional Contacts

To add additional contacts:

1. Make the following code changes.

Here, two more contacts are created for each loop through the code. The contact between the

i+1th segment on hose 1 and the j th segment on hose 2 is named with an “a” suffix (i.e.

“solidContact20a”). Similarly, the contact between the between the ith segment on hose 1 and

the j+1 th segment on hose 2 is named with a “b” suffix (i.e. “solidContact20b”).

Note: Contact creation will not happen if a contact with the same name already exists.

You might notice that the syntax for creating these additional contacts is in a more compact,

efficient form. For example, retrieving the action body and geometry are all done within the

CreateContactSolidContact() method, whereas earlier separate temporary variables were

declared and assigned to store the value of each. This syntax makes it more efficient to code,

but you need to make sure that you cast the return object of the methods explicitly with the as

clause (i.e. as IBody or as IGeometry).

Repeating the Build, Simulation, and Viewing Processes

Repeat the earlier steps to determine the effect on the model from the changes you just made.

To repeat the processes:

1. Ensure there are no errors or warnings in the Error List window at the bottom of the IDE

window. If there are, check the listing and make any corrections. From the Build menu,

select Build Solution.

IContactSolidContact solidContact = model.CreateContactSolidContact("solidContact"
+ i.ToString(), baseGeom, actionGeom);
solidContact.ContactProperty.StiffnessCoefficient.Value = 1000;
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;

// Do the contact for body i+1 and body j
solidContact = model.CreateContactSolidContact("solidContact" + i.ToString() + "a",
(model.GetEntity("BeamBody" + Convert.ToString(i + 1)) as IBody).
GetEntity("HollowCircularBeam1") as IGeometry,
 (model.GetEntity("BeamBody" + j.ToString()) as IBody).GetEntity("HollowCircularBeam1")
as IGeometry);
solidContact.ContactProperty.StiffnessCoefficient.Value = 1000;
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;

// Do the contact for body i and body j+1
solidContact = model.CreateContactSolidContact("solidContact" + Convert.ToString(i) + "b",

 (model.GetEntity("BeamBody" + i.ToString()) as IBody).GetEntity("HollowCircularBeam1")
as IGeometry, (model.GetEntity("BeamBody" + Convert.ToString(j + 1))
as IBody).GetEntity("HollowCircularBeam1") as IGeometry);
solidContact.ContactProperty.StiffnessCoefficient.Value = 1000;
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;
}

}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

22

2. Return to RecurDyn and delete all of the contacts that were defined for the previous run.

3. From the ProcessNet(General) group in the Customize tab, select Run.

4. Click Run.

33 contacts are added to your model.

5. Rerun the simulation with the same parameters as the previous run. With the additional

contacts the simulation will run in 4-5 minutes.

6. Turn on the action force display of all of the contacts using the same procedure that was

described earlier.

7. In the Simulation toolbar, in the animation controls, click the Play button, again

looking at a bottom view of the vehicle with the Render Each shading mode turned

on.

You will see that the contact forces are now much smoother.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

23

Adding a Dialog and Message

Output

In this chapter, you will create a dialog window that will allow the user to control which segments

to create contacts between. This will include designing the layout of the dialog and adding code

to the existing subroutine to call the new dialog.

Task Objective

Learn how to increase the flexibility of your application by creating a dialog window that will

allow the user to control how the hose-to-hose contacts are created. Also, learn how to display a

message to the user in the RecurDyn message window.

Estimated Time to Complete

20 minutes

Chapter

4

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

24

Designing a Dialog

To design a new dialog window:

1. Return to Visual Studio.

2. From the Project menu, select Add Windows Form.

3. In the Add New Item dialog box, select Windows Form, as shown below.

4. Accept the default name Form1.cs.

5. Click Add.

The design window for Form1, Form1.cs [Design], appears in the IDE Project Editor

window.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

25

6. In the upper left of the screen, move the cursor over the Toolbox tool.

A fly-out menu appears, which contains the different elements you could add to dialog windows

and other similar controls.

ToolBox

Properties

Window

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

26

7. In the Common Controls list, click

Label, and drag it into the upper left area

of the dialog you are designing.

8. Repeat the same step as above, except drag

TextBox into the dialog, to the right of the

Label, as shown on the right.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

27

9. Repeat the last two steps, twice, so there is a

total of three rows of labels followed by

textboxes.

10. From the Toolbox, add a Checkbox below the

other elements.

11. From the Toolbox, add two Buttons below the

other elements.

At this point, the dialog should appear as

shown on the right.

12. Click label1 to select it.

13. In the Properties window in the lower right

corner, change the value of Text to Starting

Segment.

Tip: The edit field for the label is small, but you can

edit the name more easily by clicking the dropdown

arrow to the right of the field, as shown on the right.

You have a larger area to work with.

14. Repeat the last step for Labels 2 and 3, the Checkbox, button1 and button2, and the

Dialog, using the following table for the name changes:

Dialog Element Text

label1 Starting Segment

label2 Ending Segment

label3 Interval to Hose #2

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

28

checkBox1 Add Offset Contacts

button1 OK

button2 Cancel

Form1 Automated Hose

Contact

Tip: Select the dialog itself by clicking anywhere where there are no components.

15. Resize and move the dialog elements so the dialog appears as shown at right.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

29

Tip: The Visual Studio provides alignment guides to aid in this step.

From the File menu, select Save All. This will save Form1.cs as well as the project setup.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

30

Defining the Behavior of the Dialog

At this point, the appearance of the dialog has been set. You now have to define its behavior, by

adding variables that will save the values users input into the textboxes, as well as the state of

the checkbox. You will add code that will initialize all these variables and will also define what

happens when the user clicks the OK button.

To define the dialog window behavior:

1. In the dialog design window, double-click any part of the dialog that is not another

component.

This displays the code of Form1.cs in the IDE Project editor window and creates stubs for

a subroutine called Form1_Load. This subroutine will be called whenever a new copy of the

dialog box is created and loaded, so this is an ideal place to put code that will initialize

variables.

2. Insert the following block of code, which defines the variables that are used in the dialog

box:

3. Insert the following block of code, which sets up the initial values that appear in the dialog

box:

4. Return to the dialog design window and double-click on the OK button.

public partial class Form1 : Form
{

public int BNumStart;
public int BNumEnd;
public int BodyInterval;
public bool AddOffsetFlag;

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{
textBox1.Text = "20";
BNumStart = 20;

textBox2.Text = "30";
BNumEnd = 30;
textBox3.Text = "51";
BodyInterval = 51;
checkBox1.Checked = false;
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

31

5. Within the new method that was just automatically created, insert the following code as

shown below:

6. Return to the dialog design window again and this time double-click on the Cancel button.

7. Within the new method that was just automatically created, insert the following code as

shown below:

8. From the File menu, select Save Form1.cs.

Displaying the Dialog when Running the Macro

Now you will define when the dialog is displayed when running the macro, by creating a new

instance of it within the macro subroutine.

To display the dialog window from within the macro:

1. Copy the entire ProcessNetTutorialCreateSolidContact subroutine that you just created.

2. Paste it into ThisApplication.cs, renaming the sub

ProcessNetTutorialCreateSolidContact_WithDialog.

3. Make the following changes to the subroutine, as indicated below (delete the code indicated

with strikethroughs). An explanation of each change will follow.

private void button1_Click(object sender, EventArgs e)
{
BNumStart = Convert.ToInt32(textBox1.Text);
BNumEnd = Convert.ToInt32(textBox2.Text);
BodyInterval = Convert.ToInt32(textBox3.Text);
AddOffsetFlag = checkBox1.Checked;
DialogResult = DialogResult.OK;
Close();
}

private void button2_Click(object sender, EventArgs e)
{
Close();
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

32

public void ProcessNetTutorialCreateSolidContact_WithDialog()
{

int BodyNumStart = 20; // Start creating contacts with body 20
int BodyNumEnd = 30; // Continue until body 30
int BodyInterval = 51; // Interval between body number on hose 1

// and corresponding body's number on
// hose 2 is 51

// Create a Form
Form1 MyForm = new Form1();

// Open the Dialog
MyForm.ShowDialog();

if (MyForm.DialogResult == System.Windows.Forms.DialogResult.OK)

{
int NumContacts = 0;
int BodyNumStart = MyForm.BNumStart;
int BodyNumEnd = MyForm.BNumEnd;
int BodyInterval = MyForm.BodyInterval;

for (int i = BodyNumStart; i <= BodyNumEnd; i++)

{
int j = i + BodyInterval; // j is the index for the

// corresponding bodies on
// hose #2
// Do the contact for corresponding bodies

.

.

.
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;

// Increment the number of contacts
NumContacts = NumContacts + 1;

if (MyForm.AddOffsetFlag)

{
Do the contact for body i+1 and body j

.

.

.
Do the contact for body i and body j+1
.
.
.
solidContact.ContactProperty.DampingCoefficient.Value = 0.1;
// Increment the number of contacts
NumContacts = NumContacts + 2;
}

}
application.PrintMessage(NumContacts.ToString() +
" contacts were created between the two hoses.");
}

}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

33

▪ Change 1:

Here you deleted code which hard-coded the values which will now be determined by user

input into the dialog.

▪ Change 2:

Here you created a new instance of Form1 and displayed it. The if statement tests for the

response of the user. If the user clicks OK, the code enclosed in the if statement is executed.

Also, a variable called NumContacts is declared, which keeps track of the number of contacts

that have been created. The if statement is closed in Change 5.

▪ Change 3:

Here you replaced the code where the segment number variables were hard-coded. The new

code assigns these variables with the values the user enters in the dialog.

int BodyNumStart = 20; // Start creating contacts with body 20
int BodyNumEnd = 30; // Continue until body 30
int BodyInterval = 51; // Interval between body number on hose 1

 // and corresponding body's number on
 // hose 2 is 51

// Create a Form
Form1 MyForm = new Form1();

// Open the Dialog
MyForm.ShowDialog();

if (MyForm.DialogResult == System.Windows.Forms.DialogResult.OK)
{

int NumContacts = 0;

int BodyNumStart = MyForm.BNumStart;
int BodyNumEnd = MyForm.BNumEnd;
int BodyInterval = MyForm.BodyInterval;

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

34

▪ Change 4:

NumContacts is updated appropriately. Also, the if statement tests for whether or not the user

checked the Add Offset Contacts checkbox. If the user did, the code enclosed by the if statement

is executed.

▪ Change 5:

An output message is displayed to the user within the RecurDyn message window, which

confirms how many contacts were created. Also, the outermost if statement is closed (see

Change 1).

4. From the File menu, select Save ThisApplication.cs.

// Increment the number of contacts
NumContacts = NumContacts + 1;

if (MyForm.AddOffsetFlag)
{

.

.

.

// Increment the number of contacts
NumContacts = NumContacts + 2;

application.PrintMessage(NumContacts.ToString() +
" contacts were created between the two hoses.");

}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

35

Test the Dialog Box

Repeat the earlier steps to build the macro and test it with the changes you just made.

To repeat the processes:

1. Ensure there are no errors or warnings in the Error List window at the bottom of the IDE

window. If there are, check the listing and make any corrections. From the Build menu,

select Build Solution.

2. Return to RecurDyn and delete all of the contacts that were defined for the previous run.

3. From the ProcessNet(General) group in the Customize tab, click Run.

4. You will see that there is a new item in the list,

ProcessNetDialogCreateSolidContact_WithDailog.

Select that item.

Its name is loaded in the field next to the Run button.

5. Click Run.

The dialog box shown on the right appears.

6. Click OK to use the default values.

You should now see in the RecurDyn Database window that

11 contacts have been created. A confirmation message in

the RecurDyn message output window also states that 11

contacts were created.

7. Delete the contacts that were just created by clicking on the Undo arrow in RecurDyn, and

run the macro again, but this time select the Add Offset Contacts checkbox.

You should see that 33 contacts are added to your model, and again there will be a

confirmation message in the RecurDyn message output window.

8. Restore the results from the simulation that was run earlier. Click on the File menu and

select the Import command. Use the pull-down menu to change the file type to RecurDyn

Animation Data File (*.rad). Select the file 4WD_Loader.rad and click Open.

9. Close the ProcessNet Manager window.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

36

Automating Plot Creation

In this chapter, you will make two plots in a multi-window plot:

▪ The first plot will display the force magnitudes of the individual segment-to-segment

contacts. Contacts that do not experience any force will be excluded, so the plot contains

only data of interest. The first plot will be enhanced with improved formatting, addition of

labels, and scaling of the X-axis to focus on the time of hose contact.

▪ The second plot will display the total hose-to-hose contact force, broken into X, Y, and Z

components. Both plots will be labeled and formatted.

Task Objective

Learn how to use ProcessNet commands to automate plotting. This will include:

▪ Importing a plot data file.

▪ Intelligently determining which data to display.

▪ Processing and then plotting the data on a multi-window plot.

▪ Formatting the chart based on the data.

Estimated Time to Complete

20 minutes

Chapter

5

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

37

Creating a Dialog

To determine which data to plot, another dialog window that reads user input will be needed.

This dialog will be very similar to the first dialog you created, so start by copying that dialog.

To create the new dialog window:

1. In the Project Explorer window on the right, right-click Form1.cs, and select Copy (refer

to the diagram below for the next several steps).

2. Right-click ProcessNet and select Paste.

3. Click Copy of Form1.cs to highlight it, and then click again to edit its name.

4. Change the name to Form2.cs.

Step 1 Step 2 Step 3

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

38

To adjust the new dialog window:

1. Double-click Form2.cs to open it.

The dialog design window appears.

2. From the View menu, select Code to display the code window.

3. In the code, perform a search for “Form1”. Replace all instances with “Form2”. There

should be 3 instances of this, as shown below:

4. In the Project Explorer window, right-click on

Form2.Designer.cs and select Open, as shown at right.

namespace ProcessNet.csproj
{

public partial class Form1 Form2 : Form
{

public int BNumStart;
public int BNumEnd;
public int BodyInterval;
public bool AddOffsetFlag;

public Form1 Form2()
{

InitializeComponent();
}

private void Form1_Load Form2_Load(object sender, EventArgs e)
{

textBox1.Text = "20";
BNumStart = 20;

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

39

5. Again, perform a search for “Form1”. Replace all instances with “Form2”. There should be

2 instances of this, as shown below:

6. Above the IDE Project Editor window, click

Form2.cs [Design] tab.

7. Select the dialog window itself (not any of its

individual components), by clicking on any part of

the dialog which is not a component.

8. In the Properties window (lower-right of screen),

change the Text to Automated Hose Contact

Plotting.

9. In the IDE Project Editor window, click and drag

the right side of the dialog window to resize it so the

new title is fully displayed.

10. Click the Add Offset Contacts label.

11. In the Properties window, change the text to Offset

Contacts Used.

12. From the File menu, select Save All.

partial class Form1 Form2
{

.

.

.
private void InitializeComponent()
{

.

.

.
this.Load += new System.EventHandler(this.Form1_Load Form2_Load);
this.ResumeLayout(false);
this.PerformLayout();

}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

40

Plotting the Contact Forces

You will now create a new subroutine in the ThisApplication class.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

41

To create a new subroutine:

1. Copy the following code block (including code on the next page) and insert it into the

ThisApplication class. (Tip: Make sure that this code is inserted within the class but not

within another subroutine.)

public void ProcessNetTutorialPlotData()
{

// Create an auto contact plotting dialog
Form2 MyForm = new Form2();

// Open the dialog
MyForm.ShowDialog();

// If the user clicked OK:
if (MyForm.DialogResult == System.Windows.Forms.DialogResult.OK
{

// Get the TIME data
double[] TIME = plotDocument.GetPlotData("4WD_Loader/TIME");

// |||||||| Plot individual contact forces ||||||||

// Active upper-left plot window
plotDocument.ActivateView(0, 0);

for (int bodyIndex = MyForm.BNumStart;
bodyIndex <= MyForm.BNumEnd; bodyIndex++)
{

// Load up the contact name number array

String[] contNum = {bodyIndex.ToString(), "", ""};

if (MyForm.AddOffsetFlag)
{

contNum[1] = bodyIndex.ToString() + "a";
contNum[2] = bodyIndex.ToString() + "b";

}

for (int contNumIndex = 0; contNumIndex < contNum.Length;

contNumIndex++)
{

if (String.Compare(contNum[contNumIndex], "") != 0)
{

// Get the contact data for this segment
double[] contact = plotDocument.GetPlotData(

"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] +
"/FM_SolidContact");

// Plot vs. TIME
plotDocument.DrawPlot("Contact"

+ contNum[contNumIndex], TIME, contact);
}

}
}

}
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

42

The first two commands create a new Form2 window and display it to the user:

The following if statement tests whether or not the user clicked the OK button, and

executes the enclosed code if the user did:

The following code obtains the plot data for TIME from the imported file and saves it to a

new array.

The following command activates the upper left plotting window:

The following code loads up an array of strings which will contain partial names of the data

to plot. The array is loaded according to what the user entered into the dialog. For

example, if the user set the Starting Contact to 20 and selected the “Offset Contacts Used”

checkbox, then during the first loop the array will contain the strings {“20”, “20a”, “20b”}.

// Create an auto contact plotting dialog
Form2 MyForm = new Form2();

// Open the dialog
MyForm.ShowDialog();

// If the user clicked OK:
if (MyForm.DialogResult == System.Windows.Forms.DialogResult.OK
{

// Get the TIME data
double[] TIME = plotDocument.GetPlotData("4WD_Loader/TIME");

// Active upper-left plot window
plotDocument.ActivateView(0, 0);

for (int bodyIndex = MyForm.BNumStart;
bodyIndex <= MyForm.BNumEnd; bodyIndex++)

{
// Load up the contact name number array

String[] contNum = {bodyIndex.ToString(), "", ""};

if (MyForm.AddOffsetFlag)
{

contNum[1] = bodyIndex.ToString() + "a";
contNum[2] = bodyIndex.ToString() + "b";

}

for (int contNumIndex = 0; contNumIndex < contNum.Length; contNumIndex++)
{

if (String.Compare(contNum[contNumIndex], "") != 0)
{

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

43

This next command retrieves plot data by the name of the data. The name is the same as

that seen from the plotting database window, using the “/” character as a separator:

Finally, the next command draws the data in the plot window.

2. Save the file.

3. From the Build menu, select Build Solution.

To test the edited subroutine with plotting:

1. Return to the RecurDyn modeling window with the current loader model loaded and open a

plotting window.

2. From the ProcessNet(General) group in the Customize tab,

click Run.

3. From the list, select ProcessNetTutorialPlotData.

4. Select Run.

5. In the Dialog2 dialog window that appears, accept the default

segment numbers, and check Offset Contacts Used.

You should see the following plot (as adjusted to the size of your RecurDyn Plot

Window):

// Get the contact data for this segment
double[] contact = plotDocument.GetPlotData(

"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] + "/FM_SolidContact");

// Plot vs. TIME
plotDocument.DrawPlot(“Force (N)”, TIME, contact);

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

44

Above, all 33 contacts have been plotted, but only a fraction of the curves contain non-zero

values because the contact between the hoses is restricted to several segments on each hose.

Also, all the contact occurs at the last third of the simulation, but the plot shows the entire

timeline of the simulation.

Improving the Contact Force Plot

The plot can be improved so it focuses on the interesting behavior, by:

▪ Only plotting non-zero contacts.

▪ Reducing the timeline (or range of the X-axis) so it only contains non-zero contact behavior.

You will start by only plotting non-zero contacts. Some of the logic for reducing the timeline will

be introduced but formatting the X-axis will come later.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

45

To plot only non-zero contact forces:

1. Make the following changes to the code:

public void ProcessNetTutorialPlotData()
{

// Create an auto contact plotting dialog
Form2 MyForm = new Form2();

// Open the dialog
MyForm.ShowDialog();

// If the user clicked OK:
if (MyForm.DialogResult == System.Windows.Forms.DialogResult.OK
{

// Get the TIME data
double[] TIME = plotDocument.GetPlotData("4WD_Loader/TIME");

// Initialize variables for X-axis limits
double timeAtFirstContact = TIME[TIME.Length - 1];
double timeAtLastContact = 0;

// |||||||| Plot individual contact forces ||||||||

// Active upper-left plot window
plotDocument.ActivateView(0, 0);

for (int bodyIndex = MyForm.BNumStart;
bodyIndex <= MyForm.BNumEnd; bodyIndex++)
{

// Load up the contact name number array
String[] contNum = {bodyIndex.ToString(), "", ""};

if (MyForm.AddOffsetFlag)
{

contNum[1] = bodyIndex.ToString() + "a";
contNum[2] = bodyIndex.ToString() + "b";

}

for (int contNumIndex = 0; contNumIndex < contNum.Length;

contNumIndex++)

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

46

The code now contains logic that goes through the data, now in the form of an array, and

searches for non-zero values. This code also records the first and last time the contact was non-

zero.

2. Save the file.

3. From the Build menu, select Build Solution.

{
if (String.Compare(contNum[contNumIndex], "") != 0)
{

// Get the contact data for this segment

double[] contact = plotDocument.GetPlotData(
"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] + "/FM_SolidContact");

// Plot vs. TIME
plotDocument.DrawPlot("Contact"
+ contNum[contNumIndex], TIME, contact);

// Check for non-zero contact data, and determine
// time at first contact
int j;
bool madeContact = false;
for (j = 0; j < contact.Length; j++)
{

if (contact[j] > 0)
{

madeContact = true;
if (TIME[j] < timeAtFirstContact)
timeAtFirstContact = TIME[j];
break;

}
}

// Determine time at last contact
j = contact.Length - 1;
while (j > 0)
{

if (contact[j] > 0)
{

if (TIME[j] > timeAtLastContact)
timeAtLastContact = TIME[j];
break;

}
j--;

}

// If non-zero contact data found, then plot vs. TIME
if (madeContact)

plotDocument.DrawPlot("Contact"
+ contNum[contNumIndex], TIME, contact);

}
}

}
}
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

47

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

48

To test the non-zero contact force plot:

Follow the same steps as before to test the new ProcessNet macro in a new Plot Window (open

a new Plot Window to begin).

You should see the following plot.

You can now see which contacts are non-zero throughout the simulation. Only 8 of the 33

contacts are non-zero.

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

49

Improving the Plot Formatting

The last plot completed communicates more clearly than the previous versions, but there is still

room for improvement. The plot title and axis labels and titles are not descriptive, and the

timescale is still not focused on the interesting part of the simulation. You will now perform some

plot formatting using ProcessNet functions.

To improve the plot formatting:

1. Make the following code changes:

Note that the definition of the X-axis limits Chart1.AxisX.Min and Chart1.AxisX.Max use the

variables timeAtFirstContact and timeAtLastContact that were calculated in the earlier

section.

2. Save the file.

3. From the Build menu, select Build Solution.

#region namespace
using System;
using Microsoft.VisualBasic;
using System.Windows.Forms; //IWin32Window
using System.IO;

using FunctionBay.RecurDyn.ProcessNet;
//For C#
using FunctionBay.RecurDyn.ProcessNet.Chart;
//using FunctionBay.RecurDyn.ProcessNet.MTT2D;
//using FunctionBay.RecurDyn.ProcessNet.FFlex;
//using FunctionBay.RecurDyn.ProcessNet.RFlex;
//using FunctionBay.RecurDyn.ProcessNet.Tire;

// If non-zero contact data found, then plot vs.
// TIME
if (madeContact) plotDocument.DrawPlot("Contact"

 + contNum[contNumIndex], TIME, contact);
}

}
}

// Get Chart object and format

IChart Chart1 = plotDocument.ActiveChartControl;
Chart1.Title.Text = "Hose Contact Force";
Chart1.AxisX.Title.Text = "Time (sec)";
Chart1.AxisX.Min = 0.1 * Math.Truncate(timeAtFirstContact * 10);
Chart1.AxisX.Max = 0.1 * Math.Ceiling(timeAtLastContact * 10);
Chart1.AxisX.LabelsFormat.Decimals = 1;
Chart1.AxisY.LabelsFormat.Decimals = 1;
Chart1.AxisY.Title.Text = "Contact Force (N)";
Chart1.LegendBox.Alignment = LegendBoxAlignment.LegendBoxAlignment_Far;

}
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

50

To test the formatting of the plot:

Follow the same steps as before to test the new ProcessNet macro in a new Plot Window (open

a new Plot Window to begin).

You should see the following plot:

Now the plot has been fully formatted, and the X-axis has been scaled so the non-zero contact

can be seen in detail.

Plotting the Total X, Y, and Z Contact Force

Suppose that you now want to see what the total contact force between the two hoses is,

divided into its X, Y, and Z components. The data for this plot will need to be calculated using the

existing data in the plot file. In ProcessNet, because the plot data can be stored in arrays, you

can perform mathematical operations on it. For this next plot, you will add array data together

to create the sums of the X, Y, and Z components of all the contacts.

Because you have already learned from the previous plot most of the commands to create the

new one, a single large block of code will be copied and inserted for this part of the tutorial.

Note, however, the additional data processing that sums the arrays together.

To add the second plot:

1. Insert the following code block into the location shown below, near the end of the

subroutine but within the If statement:

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

51

// Get Chart object and format
.
.
.

Chart1.AxisY.Title.Text = "Contact Force (N)";
Chart1.LegendBox.DockedPosition = DockedPositionType.DockedPositionType_Right;

// |||||||| Plot sums of X, Y, and Z components ||||||||

// Activate the lower-left plot window
plotDocument.ActivateView(1, 0);

double[] xSum = new double[TIME.Length];
double[] ySum = new double[TIME.Length];
double[] zSum = new double[TIME.Length];

for (int bodyIndex = MyForm.BNumStart; bodyIndex <= MyForm.BNumEnd; bodyIndex++)
{

// Load up the contact name number array

String[] contNum = {bodyIndex.ToString(), "", ""};
if (MyForm.AddOffsetFlag)
{

contNum[1] = bodyIndex.ToString() + "a";
contNum[2] = bodyIndex.ToString() + "b";

 }
for (int contNumIndex = 0; contNumIndex < contNum.Length; contNumIndex++)
{

if (String.Compare(contNum[contNumIndex], "") != 0)
{

// Get the contact data for this segment
double[] contactX = plotDocument.GetPlotData(
"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] + "/FX_SolidContact");
double[] contactY = plotDocument.GetPlotData(
"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] + "/FY_SolidContact");
double[] contactZ = plotDocument.GetPlotData(
"4WD_Loader/Contact/Solid Contact/solidContact"
+ contNum[contNumIndex] + "/FZ_SolidContact");

if (contNumIndex == MyForm.BNumStart)
{

// If looping through the first contact,
// initialize the sum arrays
xSum = contactX;
ySum = contactY;
zSum = contactZ;

}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

52

2. Save the file.

3. From the Build menu, select Build Solution.

else
{

// Else, add this contact's array data to the
// running total
for (int j = 0; j < TIME.Length; j++)
{

xSum[j] = xSum[j] + contactX[j];
ySum[j] = ySum[j] + contactY[j];
zSum[j] = zSum[j] + contactZ[j];

}
}

}
}

}

// Plot vs. TIME
plotDocument.DrawPlot("X Sum", TIME, xSum);
plotDocument.DrawPlot("Y Sum", TIME, ySum);
plotDocument.DrawPlot("Z Sum", TIME, zSum);

// Get Chart object and format
IChart Chart2 = plotDocument.ActiveChartControl;
Chart2.Title.Text = "Total Hose-to-Hose Contact Force";
Chart2.AxisX.Title.Text = "Time (sec)";
Chart2.AxisX.Min = 0.1 * Math.Truncate(timeAtFirstContact * 10);
Chart2.AxisX.Max = 0.1 * Math.Ceiling(timeAtLastContact * 10);
Chart2.AxisX.LabelsFormat.Decimals = 1;
Chart2.AxisY.LabelsFormat.Decimals = 1;
Chart2.AxisY.Title.Text = "Contact Force (N)";
Chart2.LegendBox.Alignment = LegendBoxAlignment.LegendBoxAlignment_Far;

}
}

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

53

To test the second plot:

The second plot will be displayed in the lower-left window (in contrast, the first plot was

displayed in the upper right window), so ensure that both windows are displayed to avoid errors.

▪ Follow the same steps as before to test the new ProcessNet macro in a new Plot Window

except this time, from the Windows group of the Home tab, select Show Left Windows.

You should see the following two plots:

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

54

Converting VSTA Project into

General Project

In this chapter, you will learn how to convert a VSTA project to a General project.

Task Objective

Learn how to use the code used in ProcessNet VSTA project into a ProceeNet General

project by converting work.

Estimated Time to Complete

5 minutes

Chapter

6

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

55

Editing the VSTA code

To open the VSTA project in Visual Studio:

1. Move to the “C:\ Users\ <User Name>\ Document\ Visual Studio 2015\ Project\

4WD_Loader” directory.

2. Open the 4WD_Loader.csproj file in the subfolder with Text Edit application except Visual

Studio.

3. Delete <ProjectTypeGuids> in <PropertyGroup> as shown on below.

4. Save the file.

5. Open the 4WD_Loader.sln project on the upper directory in Visual Studio.

Note: If the edit file is opened in VSTA, the project for Visual Studio may not converted for

Visual Studio.

To edit the code:

1. Delete a ThisApplication.designer.xml file in the

sub of ThisApplication.cs on the Project

Explorer window.

▪ The ThisApplication.desinger.xml file is

only necessary in VSTA.

<PropertyGroup>
<ProjectTypeGuids>{A860303F-1F3F-4691-B57E-529FC101A107};{FAE04EC0-301F-11D3-BF4B-
00C04F79EFBC}</ProjectTypeGuids>
<Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration>
<Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
<OutputType>Library</OutputType>
<NoStandardLibraries>false</NoStandardLibraries>
<RootNamespace>Loader</RootNamespace>
<AssemblyName>Loader</AssemblyName>
<ProjectGuid>{24C91D44-F891-47E7-B8A1-B422B35B5C7C}</ProjectGuid>
</PropertyGroup>

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

56

2. Delete a region by the name of VSTA generated code in ThisApplication.cs.

3. Add a code under the Common Variables as followings.

▪ This is to access the RecurDyn application without using VSTA.

#region VSTA generated code

private void ThisApplication_Startup(object sender, EventArgs e)
{

System.Threading.Thread.CurrentThread.CurrentCulture =
System.Globalization.CultureInfo.InvariantCulture;

MainWindow = new
WinWrapper(System.Diagnostics.Process.GetCurrentProcess().MainWindowHandle);

}

private void ThisApplication_Shutdown(object sender, EventArgs e)
{

}

private void InternalStartup()
{

this.Startup += new System.EventHandler(ThisApplication_Startup);
this.Shutdown += new System.EventHandler(ThisApplication_Shutdown);

}

#region Common Variables

FunctionBay.RecurDyn.ProcessNet.RecurDyn.IRecurDynApp app = new
FunctionBay.RecurDyn.ProcessNet.RecurDyn.RDApplication();

static public IApplication application;
public IModelDocument modelDocument = null;
public IPlotDocument plotDocument = null;
public ISubSystem model = null;

public IReferenceFrame refFrame1 = null;
public IReferenceFrame refFrame2 = null;
#endregion

4 W D L O A D E R T U T O R I A L (P R O C E S S N E T G E N E R A L)

57

4. Edit the Initiallize() function as followings.

5. From the Build menu, select Build Solution.

Thank you for participating in this tutorial!

#region Common Variables

FunctionBay.RecurDyn.ProcessNet.RecurDyn.IRecurDynApp app = new
FunctionBay.RecurDyn.ProcessNet.RecurDyn.RDApplication();

public void Initialize() //Initialize() will be called automatically before ProcessNet function call.
{

application = app.RecurDynApplication as IApplication;
application = RecurDynApplication as IApplication;
modelDocument = application.ActiveModelDocument;
plotDocument = application.ActivePlotDocument;

if (modelDocument == null & plotDocument == null)
{

application.PrintMessage("No model file");
modelDocument = application.NewModelDocument("Examples");

}
 if (modelDocument != null)

{
model = modelDocument.Model;

}
}

	4WD Loader Tutorial (ProcessNet General)
	Getting Started
	Objective
	Audience
	Prerequisites
	Procedures
	Estimated Time to Complete

	Opening the Model and Initializing ProcessNet
	Task Objective
	Estimated Time to Complete
	Starting RecurDyn
	To save the initial model:

	Starting ProcessNet
	To start ProcessNet:

	Automating Contact Definition
	Task Objective
	Estimated Time to Complete
	Understanding the Contacts to be Created
	Creating the Base Application
	To create the base application:

	Coding Using IntelliSense
	To modify the contact parameters using IntelliSense:

	Building and Running the Macro
	To build and run the macro:

	Running a Simulation
	To run a simulation:

	Viewing the Results
	To view the results:

	Adding Additional Contacts
	To add additional contacts:

	Repeating the Build, Simulation, and Viewing Processes
	To repeat the processes:

	Adding a Dialog and Message Output
	Task Objective
	Estimated Time to Complete
	Designing a Dialog
	To design a new dialog window:

	Defining the Behavior of the Dialog
	To define the dialog window behavior:

	Displaying the Dialog when Running the Macro
	To display the dialog window from within the macro:

	Test the Dialog Box
	To repeat the processes:

	Automating Plot Creation
	Task Objective
	Estimated Time to Complete
	Creating a Dialog
	To create the new dialog window:
	To adjust the new dialog window:

	Plotting the Contact Forces
	To create a new subroutine:
	To test the edited subroutine with plotting:

	Improving the Contact Force Plot
	To plot only non-zero contact forces:
	To test the non-zero contact force plot:

	Improving the Plot Formatting
	To improve the plot formatting:
	To test the formatting of the plot:

	Plotting the Total X, Y, and Z Contact Force
	To add the second plot:
	To test the second plot:

	Converting VSTA Project into General Project
	Task Objective
	Estimated Time to Complete
	Editing the VSTA code
	To open the VSTA project in Visual Studio:
	To edit the code:

