

Suspension System Tutorial (AutoDesign)

Copyright © 2020 FunctionBay, Inc. All rights reserved.

User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the Republic of Korea and other countries and is provided under a license agreement that restricts copying, disclosure, and use of such documentation. FunctionBay, Inc. hereby grants to the licensed user the right to make copies in printed form of this documentation if provided on software media, but only for internal/personal use and in accordance with the license agreement under which the applicable software is licensed. Any copy made shall include the FunctionBay, Inc. copyright notice and any other proprietary notice provided by FunctionBay, Inc. This documentation may not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made publicly available by any means without the prior written consent of FunctionBay, Inc. and no authorization is granted to make copies for such purpose.

Information described herein is furnished for general information only, is subjected to change without notice, and should not be construed as a warranty or commitment by FunctionBay, Inc. FunctionBay, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade secrets and proprietary information, and is protected by the copyright laws of the Republic of Korea and other countries. UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

Registered Trademarks of FunctionBay, Inc. or Subsidiary

RecurDyn is a registered trademark of FunctionBay, Inc.

RecurDyn/Professional, RecurDyn/ProcessNet, RecurDyn/Acoustics, RecurDyn/AutoDesign, RecurDyn/Bearing, RecurDyn/Belt, RecurDyn/Chain, RecurDyn/CoLink, RecurDyn/Control, RecurDyn/Crank, RecurDyn/Durability, RecurDyn/EHD, RecurDyn/Engine, RecurDyn/eTemplate, RecurDyn/FFlex, RecurDyn/Gear, RecurDyn/DriveTrain, RecurDyn/HAT, RecurDyn/Linear, RecurDyn/Mesher, RecurDyn/MTT2D, RecurDyn/MTT3D, RecurDyn/Particleworks I/F, RecurDyn/Piston, RecurDyn/R2R2D, RecurDyn/RFlex, RecurDyn/RFlexGen, RecurDyn/SPI, RecurDyn/Spring, RecurDyn/TimingChain, RecurDyn/Tire, RecurDyn/Track_HM, RecurDyn/Track_LM, RecurDyn/TSG, RecurDyn/Valve

are trademarks of FunctionBay, Inc.

Edition Note

This document describes the release information of **RecurDyn V9R4**.

Table of Contents

Outline of Tutorial Sample D	. 4
Suspension System Design Problem	. 5
Loading the Model and Viewing the Yaw & Roll ranges	. 6
Defining the design variables	. 7
Defining the performance index	. 9
Running a Design Optimization	11
Design Optimization with Screening Variables	16

Outline of Tutorial Sample D

Model	Description
	Suspension System Design Problem:
Sample D	This design has two design objectives. Also, it has 27 design variables. The design goal is to minimize the Yaw-range and the Roll-Range of tire motion. This problem is not easy because it is a multi-objective problem and has too many design variables. In general, other design tools employ D-Optimal design or Latin Hypercube for constructing the meta model. Suppose that construct a quadratic response surface model, D-optimal design fundamentally requires 406 sampling points, which is evaluate by using 1+2*27+27*26/2. AutoDesign uses however only 44 evaluations to solve the problem without variable screening. Key Point: Study the concept of multi-objective optimization and the procedure of screening design variables.

Sample

Suspension System Design Problem

Let's consider the simple model of car suspension system. The system has 5 components such as arm, tie rod, knuckle, shock absorber damper and tire. When the tire moves along vertical direction, the simulation shows the damping process and kinematical motion.

All the design variables are the geometric coordinates of joints. The design objective is to minimize the first rotational Yaw-Roll of tire.

This problem has 27 design variables for 9 joints. Nevertheless, we will try to minimize the Yaw-range and the Roll- range directly. In other words, design variable screening is not used. Next, we will re-try to solve the same problem after screening the design variables. Then, the optimization results will be compared.

		Open files related in Sample-E
Sample	<ir n</ir 	nstallDir>\Help\Tutorial\AutoDesign\SuspensionSystem\Examples\SAMPLE_D0.rdy
	1	<installdir>\Help\Tutorial\AutoDesign\SuspensionSystem\Solutions\SAMPLE_D 0.rdyn</installdir>
Sample n 1 1 0.rdyn 0.rdyn 2 1.rdyn 1.rdyn		
	3	<installdir>\Help\Tutorial\AutoDesign\SuspensionSystem\Solutions\SAMPLE_D 2.rdyn</installdir>

Note: If you change the file path at discretion, it can be located in any folder that you specify.

Chapter

Loading the Model and Viewing the Yaw & Roll ranges

To load the base model and view the animation:

- RecurDyn
- 1. On your Desktop, double-click the **RecurDyn** tool.

RecurDyn starts and the **Start RecurDyn** dialog box appears.

- 2. Close **Start RecurDyn** dialog box. You will use an existing model.
 - In the toolbar, click the **Open** tool and select 'Sample_D0.rdyn' from the same directory where this tutorial is located. The suspension system appears in the modeling window.
 - 4. Click the **Dynamic/Kinematic** button.

Start RecurDyn × New Model Name Intodel1 Unit MMKS(Millimeter/Kilogram/Newton/Second) Setting Gravity -Y Open Model Browse Recent Models Icons	×		
New Model -			
Name	Model1		
Unit	MMKS(Millimeter/Kilogram/Newton/Second)	Setting	
<u>G</u> ravity	ү х	Setting	
		<u>о</u> к	
Open Model		Browse	
Recent Mode	els	Icons	•
Show 'Start	: RecurDyn' Dialog when starting		

Dyn/Kin

Plot

Click the **Plot Result** button. Then, window is switched. In right side, you can see plot database. If it is not shown, check the database window in **View** menu. Expression 2 & 3 are Yaw and Roll angles.

Defining the design variables

All geometric coordinates of joints are defined by using **Parametric Points** shown at the below figure. In Figure, they are represented as **A_x, A_y, ..., R_y** and **R_z**.

Next, the parametric values are defined in the **Parametric Value** menu in **Subentity**

No [OP	Name	Value	Comment 🔺 🕨
1		A_x	-5. E	
2		A_y	425. E	
3		A_z	-129. E	
4		B_x	-4. E	
5		B_y	736. E	=
6		B_z	-156. E	
7		G_X	297. E	
8		G_y	401. E	
9		G_z	-116. E	
10		T_x	165. E	
11		T_y	335. E	
12		T_z	28. E	
13		H_x	130. E	
14		H_y	690. E	
15		H_z	10. E	
16		C_x	30.5 E	
47 F		C. v	505 E	

All the above relations have defined in the model 'SAMPLE_D.rdyn'.

Next, select the **Design Parameter** menu.

Then, you can see that 27 parametric values are linked by design parameters as shown below.

	Name	Туре	Prop.	Descripti	Curr	LB	UB	Design Cost	DP Form	DV 📥
1	DP1	Direct		A_X	-5.	-15,	5.	0.	Value	
2	DP2	Direct		A_Y	425.	415.	435.	0.	Value	
3	DP3	Direct		A_Z	-129.	-139.	-119.	0.	Value	
4	DP4	Direct		B_X	-4.	-14.	6.	0.	Value	v
;	DP5	Direct		B_Y	736.	726.	746.	0.	Value	v
5	DP6	Direct		B_Z	-156.	-166.	-146.	0.	Value	 Image: A set of the set of the
7	DP7	Direct		G_X	297.	287.	307.	0.	Value	 Image: A start of the start of
3	DP8	Direct		G_Y	401.	391.	411.	0.	Value	
9	DP9	Direct		G_Z	-116.	-126.	-106.	0.	Value	I
	DP10	Direct		ТХ	165.	155.	175.	0.	Value	

Defining the performance index

Let's consider the performance indexes. We will minimize the Yaw and Roll ranges during tire moves vertical direction. As RD does not provide those values directly, we should evaluate them by using Expression and Variable Equation.

In order to evaluate them, we evaluate the minimum and the maximum values for Yaw and Roll angles. Then, the deviations between Max and Min are the ranges for them.

• **Step 1**: Create the **Expression** for **Yaw** and **Roll** angles. The following figures show the expressions to save Yaw and Roll angles.

Expression	Expression
Name Ex2	Name Ex3
YAW(1,2)*RTOD	ROLL[1,2]*RTOD
Available Argument List	Available Argument List
Function expressions ID Entity	Entity
$= \frac{1}{2} \frac{1}{\text{Ground DISP GROUND}}$	$= \frac{1}{2} \frac{1}{\text{Ground DISP, GROUND}}$
the <i>g</i> Displacement the <i>g</i> Velocity	teresting Displacement
Acceleration	Constant of the second
B → F Generic force	Generic Torce Generic Torce Generic Torce Generic Torce
in fdt System element	🖶 Jdt System element 🗨
Add Delete	Add Delete
OK Cancel Apply	OK Cancel Apply

• Step 2: By using Expression, 'YAW_DEVIATION' and 'ROLL_DEVIATION' are defined. Then, you can define them as analysis responses at 'Analysis Response' in AutoDesign. The following figure shows this process.

	Analysis Re	esponse List		
	Analysis Re	esponse		
	No	Name Type	Pr Description	Treatment PI
	1 4	R1 Basic	YAW_DEVIATION	End Value
	2 AI	R2 Bas	ROLL_DEVIATION	End Value
-				
Expression List	Analysis Response - Bas	sic		
No Name Expression Va	Name			V
1 Ex1 IF(TIME-18:100-(10*TIME E 1	Result Output YAV	N_RANGE	EL	
2 Ex2 YAW(1,2)*RTOD E	Treatment	d Value		
3 Ex3 ROLL(1,2)*RTOD E				V
4 Ex4 0.0 E	Description YAV	N_DEVIATION		
5 Ex5 IF(YAW(1,2)*RTOD-VARV			▼ Delete	
6 Ex6 IF(YAW(1,2)*RTOD-VARV	ОК	Cancel		
7 Ex7 IF(ROLL(1,2)*RTOD-VARV E N			ОК	Cancel Apply
8 EX8 IF(ROLL(1,2)*RTOD-VARV E N	/Α			
9 YAW_RANGE VARVAL(2)-VARVAL(1) E N	/A			
10 ROLL_RAINGE VARVAL(2)-VARVAL(1) E N	/Α			
		v		
		w l		
		<u>×</u>		
Create	Delete			
C	K Cancel App	ply		

Running a Design Optimization

When you select the **'Design Optimization**', all the design variables, check in **DV**, will be included in the design. The performance index however will be empty. Then, you add ARs to the Performance Index.

The optimization problem is to minimize the Yaw Range and the Roll Range while satisfying those two ranges less than them of the current design. Also, we think that Yaw Range is more important than Roll Range. Thus, its' weight is twice greater than that of Roll.

Minimize Yaw_Deviation*2 & Roll_Deviation

subject to

Yaw_Deviation =< 0.67 Roll_Deviation =< 2.12,

where the values of 0.67 and 2.12 are the range values for the current design. Those two inequality constraints seem to be redundant because two objectives should be minimized. It is however not guaranteed. Thus, it is difficult to solve multi-objective optimization problem. In the Part II manual: Guideline for **AutoDesign**, the chapter 5 explains the multi-objective optimization.

Let's consider the above design problem from the view of multi-objective optimization process. If necessary, let's denote $f_1 = Yaw_Deviation$ and $f_2 = Roll_Deviation$. When the initial samples construct the approximate functions of $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$, which are called

as metamodels. Then, f_1^* and f_2^* is the minimum values from the initial samples.

$$Min \max\left\{ \left(\frac{f_1(\mathbf{x}) - f_1^*}{f_1^*} \right), \left(\frac{f_2(\mathbf{x}) - f_2^*}{f_2^*} \right) \right\}$$

Thus, the quality of multi-objectives optimization depends on the number of initial samples. Unfortunately, this problem has 27 design variables, which requires too many sample points. Those two inequality constraints can avoid the pre-mature convergence, even though the number of initial samples is minimized.

Let's start to solve the multi-objective optimization problem:

1. Click the **Performance Index** Tab. Then, define the above optimization formulation as follows:

D	esign Oj	otimiza	ntion								
[Design Va	riable	Performan	ice Ir	odex Optimization Cor	ntrol	Result Sheet	Sumn	ary Sheet		
	PI	Use	AR		Description		Definition		Goal		Weight/Limit Value
	1		AR1	-	YAW_DEVIATION		Objective	-	MIN	•	2.
	2		AR2	-	ROLL_DEVIATION		Objective	-	MIN	•	1.
	3		AR1	-	YAW_DEVIATION		Constraint	-	LE	•	0.67
	4		AR2	•	ROLL_DEVIATION		Constraint	-	LE	•	2.12

2. Click the **Optimization Control** Tab. The default values are directly used. Then, click the **Execution** button.

	Performance Index	Optimization Control	Result Sheet	Summary SI	neet				
DOE Meta N	lodeling Methods				Me	thods			
Convergence	Tolerance								
Objective C	hange Rate in Consec	utive Iterations		5	e-02				
Equality Constraints					1.e-03				
Inequality C	onstraints	1	1.e-03						
Maximum It	eration of SAO	3	30.						
Convergend	e Relaxation Control			C	FF				
Simulation	lype			D	ynamic/Kinematic				
🗹 Save Res	ults All_Variables\			N	umber of Trials	33			
	Analysis Set	ting] [Execution				
			J <u> </u>						

Then, you can see the summary of design formulation. Check **Design Variables**, **Performance Index** and **Meta-Model information**. If all information is correct, then click the **OK** button. Then, optimization process is progressed.

No	DV	Description	Current	LB	UB	Туре		Value	E
1	DP1	A_X	-5.	-15.	5.	Variab	le	0.	1
2	DP2	A_Y	425.	415.	435.	Variab	le	0.	1
3	DP3	A_Z	-129.	-139.	-119.	Variab	le	0.	
4	DP4	B_X	-4.	-14.	6.	Variab	le	0.	
5	DP5	B_Y	736.	726.	746.	Variab	le	0.	F
2		AR2			Constraint	INIIN		0.67	ł
1		AR1	YAW_DEVIATION		Objective	MIN	2.		1
2		AR2	R2 ROLL_DEVIAT		Objective	MIN		1.	I
3		AR1	YAW_DEVIATI	ION	Constraint	LE		0.67	
4		AR2	ROLL_DEVIAI	ION	Constraint	LE		2.12	
eta - I li	Model	Method	li Padia	ncomplete Si	mall Composite	Design -2			
IVI	Polynomin	al Type	Auto						
	r olynollin				Auto				

3. When the optimization process is completed, the **Result Sheet** Tab is automatically shown. The optimization process is converged in 4 iterations. Thus, AutoDesign solves the suspension system design having 27 design variables only for 37 analyses that includes 33 analyses for the initial sampling points. The final design gives that AR1=0.667 and AR2=1.405, which can minimize the Yaw deviation by 0.3 % and the Roll deviation by 33.7 %.

Convergence History

in variable	Performance Index Optimization Contr	rol Result Sheet Summary She	et
imization H	istory of AR Values		
No	AR1	AR2	Violation
1	3.86520917508263	1.57468713862915	3.19427617508263
2	0.667637053194471	1.40589313958494	0.
3	0.306546631927268	2.02587083724447	0.
4	0.301460706428136	2.0239105350193	0.
; 🗈 🗠	🔍 😒 👻 🖩 🗘 🕀 🌠 🕷	i 🗉 🔅 🔏 🙋	
25.00 20.00 15.00			Normalized Objed Maximum Violation
5.00 0.00 1	2	s Steration	4

Summary Sheet

sign Variable	Performance Index	Optimization Con	trol Result She	et Summary She	et	
esign Variable	s					
No	Name	Description	Optimum	Current	LB	UB
1	DP1	A_X	5.	-5.	-15.	5.
2	DP2	A_Y	415.	425.	415.	435.
3	3 DP3		-139,	-129.	-139.	-119.
nalysis Respor	nses					
No	Na	ime	D	escription		Optimum
1 AR1		R1	YAW_DEVIATION			.667637053194471
2	2 AR2		POL	DEVIATION	1	.40589313958494
erformance In	dexes		NOL			
2 erformance Inc	dexes		Kot			
erformance Inc	dexes AR	Desc	ription	Definition	Goal	Weight/Limit Value
erformance Inc No	dexes AR AR1	Desc YAW_DI	ription EVIATION	Definition Objective	Goal MIN	Weight/Limit Value 2.
erformance Ind	dexes AR AR1 AR2 AR1	Desc YAW_DI ROLL_D XAW_DI	ription EVIATION EVIATION	Definition Objective Objective	Goal MIN MIN	Weight/Limit Value
erformance Ind No 1 2 3 4	dexes AR AR1 AR2 AR1 AR2 AR1 AR2	Desc YAW_DI ROLL_D YAW_DI	ription EVIATION EVIATION EVIATION EVIATION	Definition Objective Objective Constraint	Goal MIN MIN LE LE	Weight/Limit Value 2. 1. 0.67 2.12
erformance Ind No 1 2 3 4 SAO	dexes AR AR1 AR2 AR1 AR2 AR1 AR2	Desc YAW_DI ROLL_D YAW_DI ROLL D	ription EVIATION EVIATION EVIATION EVIATION	Definition Objective Objective Constraint Constraint	Goal MIN MIN LE LE	Weight/Limit Value 2. 1. 0.67 2.12
erformance Ind No 1 2 3 4 SAO	dexes AR AR1 AR2 AR1 AR2 AR1 AR2 ethod Incomplete	Desc YAW_DI ROLL_D YAW_DI ROLL D ROLL D	ription EVIATION EVIATION EVIATION EVIATION EVIATION esign -2	Definition Objective Objective Constraint Constraint	Goal MIN MIN LE LE	Weight/Limit Value 2. 1. 0.67 2.12
Provide a constraint of the second se	dexes AR AR1 AR2 AR1 AR2 AR1 AR2 Complete Radial Basi	Desci YAW_DI ROLL_D YAW_DI ROLL D Small Composite Dr s Functions Model(h	ription EVIATION EVIATION EVIATION EVIATION esign -2 Multi-Quadratic)	Definition Objective Objective Constraint Constraint	Goal MIN LE LE	Weight/Limit Value 2. 1. 0.67 2.12 Auto
Provide a constraint of the second se	dexes AR AR1 AR2 AR1 AR2 AR1 AR2 ethod Incomplete Radial Basi Runs 33	Desc YAW_DI ROLL D YAW_DI ROLL D Small Composite D Small Composite D SAO	ription EVIATION EVIATION EVIATION EVIATION esign -2 Multi-Quadratic) 4(0)	Definition Objective Objective Constraint Constraint Polynomi Total Eval	Goal MIN LE LE nal Type	Weight/Limit Value 2. 1. 0.67 2.12 Auto 37
Provide the second seco	dexes AR AR1 AR2 AR1 AR2 AR1 AR2 ethod Incomplete Radial Basi Runs 33 In ENSYMPTED	Desci YAW_DI ROLL D YAW_DI ROLL D Small Composite Di s Functions Model(M SAO Trupk\AddEile\Tutpo	ription EVIATION EVIATION EVIATION EVIATION esign -2 Multi-Quadratic) [4(0)	Definition Objective Objective Constraint Constraint Polynomi Total Eval	Goal MIN LE LE nal Type	Weight/Limit Value 2. 1. 0.67 2.12
Provide a constraint of the second se	dexes AR AR1 AR2 AR1 AR2 AR1 AR2 ethod Incomplete Radial Basi gn E:\SVIN\GT\	Desci YAW_DI ROLL_D YAW_DI ROLL D Small Composite Do s Functions Model(N SAO Trunk\AddFile\Tutor	ription EVIATION EVIATION EVIATION EVIATION esign -2 Multi-Quadratic) [4(0) ial/AutoDesign(5	Definition Objective Objective Constraint Constraint Polynomi Total Eval	Goal MIN LE LE nal Type uations \All_Variables	Weight/Limit Value 2. 1. 2.12 Auto 37 DD_004

In the summary sheet, shown in the above, is newly provided. The optimization results are summarized in the design variables and analysis responses lists. Also, the SAO information is summarized, which shows that SAO requires 4 iterations. Thus, the number of total evaluations is 37. And the analysis result of optimal design is `DO_004'.

4. Finally, let's compare the yaw and roll ranges for the initial design and the final design. DO_004 is the final design. Also, DOE33 is the initial design. The following figures show those comparisons. When the ISCD-1 and ISCD-2 compose the initial samples, the final one of the initial samples is the current design. In the following figures, the red color line is an optimum result.

Yaw(Toe)

Chapter 5

Design Optimization with Screening Variables

Now, let's compare the optimization results for considering all design variables and the screened design variables. Thus, save the model file 'Sample_D0.rdyn' as 'Sample_D1.rdyn' and delete all the results in the Simulation History.

First, let's try to screen the design variables. As screening is based on the effect analysis results, you select the design study in **AutoDesign**. Following steps explain the screening process:

1. Enter the **Design Study** menu.

2. Then, you can see the list of design variables in the **Design Variable** tab. As the number of design variables is 27, we select the **2-Level Orthogonal Array** to reduce the number of trials. If 3-Level Orthogonal Array is selected, the number of trials is 81.

sign Variable	Performance Ind	ex Simulation Control	Effec	t Analysis	Screening Variables	Correlation Ana	alysis		
Method 2-l	evel Orthogonal A	rray 🔻							
Ext	ended Plackett-Bur	man							
DV Th	ree-level Orthogon	al Array	Level	Lower	Mid1	Mid2	Upper		
1 Lev 2-L	el Balanced Descrip. evel Orthogonal Ar.	rray	2	-15.	0	0	5.		
2 Bo	se`s Orthogonal Ar	ray	2	415.	0	0	435.		
3	DP3	A_Z	2	-139.	0	0	-119.		
4	DP4	B_X	2	-14.	0	0	6.		
5	DP5	B_Y	2	726.	0	0	746.		
6	DP6	B_Z	2	-166.	0	0	-146.		
7	DP7	G_X	2	287.	0	0	307.		
8	DP8	G_Y	2	391.	0	0	411.		
9	DP9	G_Z	2	-126.	0	0	-106.		
10	DP10	T_X	2	155.	0	0	175.		
11	DP11	T_Y	2	325.	0	0	345.		
12	DP12	T_Z	2	18.	0	0	38.		
13	DP13	H_X	2	120.	0	0	140.		
14	DP14	H_Y	2	680.	0	0	700.		
15	DP15	H_Z	2	0.	0	0	20.		
16	DP16	c_x	2	20.5	0	0	40.5		
17	DP17	с_Y	2	585.	0	0	605.		
18	DP18	C_Z	2	485.	0	0	505.		
19	DP19	E_X	2	-14.	0	0	6.		
Number of Trials 32 R Set Default									

3. Next, in the Performance Index tab, two analysis responses such as AR1 and AR2 will be shown. If they are not, you retry to make **`Sample_D1.rdyn**' from **`Sample_D0.rdyn**'.

[esign St	udy							
	Design Va	riable	Performance Index	Simulation	Control	Effect Analysis	Screening Variables	Correlation Analysis	
	PI		AR						
	1		AR1						
	2		AR2				ROLL_DEVIATION		

4. Next, click the **Simulation Control** tab. If you save the analysis results each trial, check the **Save Results** and enter the **Folder name**. Then, click the **Execution** button.

Design S	Study						
Design V	/ariable Per	formance Index	Simulation Control	Effect Analysis	Screening Variables	Correlation Analysis	
Simu	ulation Type				Dynamic/k	ïnematic	•
✓s	ave Results	effect∖			Nu	mber of Trials 32	

	DV	Description	Level	Lower	Mid1	Mid2	Upper	
1	DP1	A_X	2	-15.	0	0	5.	
2	DP2	A_Y	2	415.	0	0	435.	
3	DP3	A_Z	2	-139.	0	0	-119.	
4	DP4	B_X	2	-14.	0	0	6.	
5	DP5	B_Y	2	726.	0	0	746.	
	2				KOLL_DEVI	Anon		-8
	2				KOLLDEV	Allow		l
DE Me	thod				KOLL_DEV	Anon		l
DE Me	thod		2-	Level Orthogo	nal Array			
DE Me	thod Method Trial No		2-	Level Orthogo 32	nal Array			-1
DE Me	thod Method Trial No		2-	Level Orthogo 32	nal Array			

5. After all analyses have been completed, the design study window is activated. Then, click the **Effect Analysis** tab. Then, you can see the effect analysis chart by checking the check boxes in the **Effect Values** column and clicking the **Draw** button. The effect analysis results are shown as follows:

Two figures show that the different variables are sensitive to PI_1 and PI_2. Generally, users select the sensitive variables from the above charts. It is however not easy. Thus, **AutoDesign** provides a statistical guideline for screening variables.

6. Click the **Screening Variables** tab. Then, select **AR_1** in the **PI** box. Then, you can see the scatter points. The right positioned points are more sensitive to the left ones. Move the controller to divide design variable groups. Then, the **Cutoff Value** as **0.3** and click the **Screening DV** button.

Then, the red line divides the scatter points into two groups. The right group is the remaining variables. Then, the screened variables are marked as **`On**'. Others are done as **`Off**'.

Next, select **AR2** in the **PI** box and do the same process similarly except defining **Cutoff Value** as **0.06**. Then, the screened variables are summarized as follows:

The screening DV gives that the active design variables (DV) are DP3, DP6, DP8, DP10, DP12, DP15, DP17, DP19, DP21, and DP27.

Now, create the new model by clicking the **Save** button with checking **Create New Model**. The new model file name is **`Sample_D2.rdyn**'.

7. Now, you can see that the model file is changed as 'Sample_D2.rdyn'. Click the Design Parameter icon in AutoDesign. Unlike the model 'Sample_D1.rdyn', the screened variables are only checked in DV column. This represents that DV1=DP3, DV2=DP6, DV3=DP8, DV4=DP10, DV5=DP12, DV6=DP15, DV7=DP17, DV8=DP19, DV9=DP21, and DV10=DP27. Most of the active design parameters are z-coordinate values.

٧o	Name	Туре	Prop	Description	Current	LB	UB	Design Cost Rate	DP Form	DV	
1	DP1	Direct		A_X	-5.	-15.	5.	0.	Value		
2	DP2	Direct		A_Y	425.	415.	435.	0.	Value		
3	DP3	Direct		A_Z	-129.	-139.	-119.	0.	Value		=
4	DP4	Direct		B_X	-4.	-14.	6.	0.	Value		
5	DP5	Direct		B_Y	736.	726.	746.	0.	Value		
6	DP6	Direct		B_Z	-156.	-166.	-146.	0.	Value		
7	DP7	Direct		G_X	297.	287.	307.	0.	Value		
8	DP8	Direct		G_Y	401.	391.	411.	0.	Value		
9	DP9	Direct		G_Z	-116.	-126.	-106.	0.	Value		
0	DP10	Direct		T_X	165.	155.	175.	0.	Value		
1	DP11	Direct		T_Y	335.	325.	345.	0.	Value		
10	DP12	Direct		т 7	20	10	20	^	Value		_

8. Next, Click the **Design Optimization** icon. Then, the screened variables are shown as follows:

Opt

g	n Variable	Performance Index	Optimization Control	Result Sheet 9	Summary Sheet				
	DV	DP	Description	Current	LB	UB	Туре		Value
	1	DP3	A_Z	-129.	-139.	-119.	Variable	-	0.
	2	DP6	B_Z	-156.	-166.	-146.	Variable	-	0.
	3	DP8	G_Y	401.	391.	411.	Variable	•	0.
	4	DP10	T_X	165.	155.	175.	Variable	•	0.
	5	DP12	T_Z	28.	18.	38.	Variable	-	0.
	6	DP15	H_Z	10.	0.	20.	Variable	-	0.
	7	DP17	C_Y	595.	585.	605.	Variable	•	0.
	8	DP19	E_X	-4.	-14.	6.	Variable	•	0.
	9	DP21	E_Z	-40.	-50.	-30.	Variable	-	0.
	10	DP27	R_Z	-332.	-342.	-322.	Variable	-	0.

9. Click the **Performance Index** tab. The optimization formulation will be the same as that of **`Sample_D1.rdyn**'. Let's use the same formulation.

De	esign Optimization										
D	esign Vai	riable	Performan	ce Ir	Optimization Cor	ntrol	Result Sheet	Summ	ary Sheet		
	PI	Use	AR		Description		Definition		Goal		Weight/Limit Value
	1		AR1	•	YAW_DEVIATION		Objective	-	MIN	•	2.
	2		AR2	•	ROLL_DEVIATION		Objective	-	MIN	-	1.
	3		AR1	•	YAW_DEVIATION		Constraint	-	LE	-	0.67
	4	~	AR2	-	ROLL_DEVIATION		Constraint	-	LE	-	2.12

10. In the **Optimization Control** tab, all the convergence tolerances use the default values. The result files are saved in the folder **`Screening**'.

esign Optimizat	ion							
Design Variable	Performance Index	Optimization Control	Result Sheet S	ummary Sheet				
DOE Meta Mo	odeling Methods						Methods	
Convergence Te	olerance							
Objective Ch	ange Rate in Cons	ecutive Iterations			5	.e-002		
Equality Con	straints				1	.e-003		
Inequality Co	onstraints				1	.e-003		
Maximum Ite	ration of SAO		З	0.				
Convergence	e Relaxation Contro	bl			C)FF		•
Simulation T	уре				C	ynamic/Kinematic		-
✓ Save Resu	ults Screening\				N	umber of Trials	13	
	Analy	ysis Setting				Execution		
						ОК	Cancel	Apply

11. After the optimization is completed, let's see the result sheet. **AutoDesign** is converged in 3 iterations. The optimized AR1 and AR2 are 0.657 and 2.087, respectively. AR1 and AR2 are similar to those of the design without screening.

Convergence History

Unlike the convergence history for the design problem without screening, the above convergence history simply decreased. Let's compare the summary of two optimization problems.

	With Screening	Without Screening
Number of design variables	10	27
Initial samples	13	33
Number of SAO runs	2	4
Samples for screening	32	-
Optimum response	0.657, 2.087	0.667, 1.405

Thanks for participating in this tutorial!