

连杆形状优化教程 (AutoDesign)

Copyright © 2017 FunctionBay, Inc. All rights reserved

User and training documentation from FunctionBay, Inc. is subjected to the copyright laws of the Republic of Korea and other countries and is provided under a license agreement that restricts copying, disclosure, and use of such documentation. FunctionBay, Inc. hereby grants to the licensed user the right to make copies in printed from of this documentation if provided on software media, but only for internal/personal use and in accordance with the license agreement under which the applicable software is licensed. Any copy made shall include the FunctionBay, Inc. copyright notice and any other proprietary notice provided by FunctionBay, Inc. This documentation may not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made publicly available by any means without the prior written consent of FunctionBay, Inc. and no authorization is granted to make copies for such purpose.

Information described herein is furnished for general information only, is subjected to change without notice, and should not be construed as a warranty or commitment by FunctionBay, Inc. FunctionBay, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valuable trade secrets and proprietary information, and is protected by the copyright laws of the Republic of Korea and other countries. UNAUTHORIZED USE OF SOFTWARE OR ITS DOCUMENTATION CAN RESULT IN CIVIL DAMAGES AND CRIMINAL PROSECUTION.

Registered Trademarks of FunctionBay, Inc. or Subsidiary

RecurDyn[™] is a registered trademark of FunctionBay, Inc.

RecurDynTM/SOLVER, RecurDynTM/MODELER, RecurDynTM/PROCESSNET, RecurDynTM/AUTODESIGN, RecurDynTM/COLINK, RecurDynTM/DURABILITY, RecurDynTM/FFLEX, RecurDynTM/RFLEX, RecurDynTM/RFLEXGEN, RecurDynTM/LINEAR, RecurDynTM/EHD(Styer), RecurDynTM/ECFD_EHD, RecurDynTM/CONTROL, RecurDynTM/MESHINTERFACE, RecurDynTM/PARTICLES, RecurDynTM/PARTICLEWORKS, RecurDynTM/ETEMPLATE, RecurDynTM/BEARING, RecurDynTM/SPRING, RecurDynTM/TIRE, RecurDynTM/TRACK_HM, RecurDynTM/TRACK_LM, RecurDynTM/CHAIN, RecurDynTM/MTT2D, RecurDynTM/MTT3D, RecurDynTM/BELT, RecurDynTM/R2R2D, RecurDynTM/HAT, RecurDynTM/dĦ柄, RecurDynTM/PISTON, RecurDynTM/VALVE, RecurDynTM/TIMINGCHAIN, RecurDynTM/ENGINE, RecurDynTM/GEAR are trademarks of FunctionBay, Inc.

Third-Party Trademarks

Windows and Windows NT are registered trademarks of Microsoft Corporation.

ProENGINEER and ProMECHANICA are registered trademarks of PTC Corp. Unigraphics and I-DEAS are registered trademark of UGS Corp. SolidWorks is a registered trademark of SolidWorks Corp. AutoCAD is a registered trademark of Autodesk, Inc.

CADAM and CATIA are registered trademark of Dassault Systems. FLEX*Im* is a registered trademark of GLOBEtrotter Software, Inc. All other brand or product names are trademarks or registered trademarks of their respective holders.

Edition Note

These documents describe the release information of *RecurDyn*[™] V9R1.

目录

连杆形状优化	4
加载与仿真模型的建立	5
定义设计变量和设置	7
定义分析响应	15
运行优化设计	17
分析结果对比	

Sample

连杆形状优化

本教程处理形状优化设计问题。设计对象是发动机连杆。连杆作用是将活塞的往 复运动传递给曲轴的旋转运动。因此,设计目标是减少质量来提高能源效率和减少惯 性力。同时还要考虑连杆是否有足够的强度承受活塞的压缩力。设计变量选择连杆的 形状。

	Import files related in Sample-G				
	<install dir=""></install>				
Sample	\Help\Tutorial\AutoDesign\AutoDesign_G\Examples\Sample_G.rdy				
	n				
Solutio n	<install dir=""> \Help\Tutorial\AutoDesign\AutoDesign_G\Solutions\Sample_G.rdy</install>				
••	n				

注意:如果想改变上述的文件路径,它可以位于任何指定的文件夹。

加载与仿真模型

1. 双击桌面上的 Recurdyn 图标。

运行 Recurdyn, 会弹出 Start Recurdyn 对话框。

- 2. 关闭对话框,将会使用一个现有的模型。
- 3. 在快速访问工具栏中,点击 Open 工具, 在本教程的目录里选择 Sample_G. rdyn。

确定后,系统正式运行。

St	art RecurDyn		×				
ſ	New Model -						
	Name	Model1					
	Unit	MMKS(Millimeter/Kilogram/Newton/Second)	Setting				
	<u>G</u> ravity	-Y 💌	Setting				
			<u>O</u> K				
	Open Model Browse						
	Recent Mode	ls	Icons				
	RecurDyn.rdyn						
	Show 'Start RecurDyn' Dialog when starting						

- **%** 点击 **Dynamic/Kinematic** 键, 弹出如下对话框。
 - 5. 点击 Simulate 键。

Dynamic/Kinematic Analysis				
General Parameter Initial Condition				
End Time	1. Pv			
Step	200. Pv			
Plot Multiplier Step Factor	1. Pv			
Output File Name	Sample_G_DO			
Static Analysis				
Eigenvalue Analysis				
State Matrix				
Frequency Response Analysis				
Hide RecurDyn during Simulation				
Display Animation				
Gravity				
X 0.0 Y 0.0 Z 0.0 Gravity				
Unit Newton - Kilogram - Millimeter - Second				
Simu	late OK Cancel			

▶ 6. 点击 Play 键,查看结果。

定义设计变量和设置

在下图中,设计变量选择连杆形状,连杆分为4个区域。其中 DV1 是 C 区圆的半径, DV2 是 A 区的半径, DV3、4 是 B 区的宽度, DV5、6 是 D 区的高度。

1. 在 AutoDesign 菜单中,点击 design parameter,将会弹出如下图所示的 design parameter 对话框。

Desig	Design Parameter List										
Desig	n Param	eter									
۹.,	Name	Туре	Prop.	Descripti	Curr	LB	UB	Design Cost	DP Form	DV	
											Y
	Create		Incert	Dired	Pelatio	n			Delete	1	
	create		men		Relatio				Delete]	
								OK	Cancel	Ap	ply

- 2. 设置 C 区设计变量 DV1
 - a. 选择设计参数类型为 **FEShape2**: Cylindrical distance。然后点击 Create 键, 将会弹出如下图所示的 **FEShape2**: Cylindrical distance 窗口。

D	esig	n Parai	meter L	ist								
[Desig	n Param	eter									
	۹.,	Name	Туре	Prop.	Descripti	Curr	LB	UB	Design Cost.	DP Form	DV	T
												_
												V
												v
												<u> </u>
		Create		Insert	FESha	ape2 : Cy	linderi	ical Dis	stance 🔻	Delete		
L	_				Direct	Relation	n					
					FESha	pe1 : Tra	anslati lindari	onal R	elation	Cancel	Ap	ply
					EESha	ne3 : Sp	herica	l Dista	nce			

FEShape2 : Cylindrica	l Distance
Name	DP1
Node Set	FFlexBody1.UR N
Configuration Design	OFF 💌
Center Ref. Marker	ImportBody37.Marker2 M
Center Axis	0, 0, 1. D
Current Value	1.
Lower Bound	0.7
Upper Bound	1.3
Description	
DP Form	Scale
ОК	Cancel

b. 结点集: C 区 UR

- c. Configuration design 项选择 off。
- d. Reference marker 项设置为 importbody37. Marker2。
- e. Center Axis 项设置为 0, 0, 1。
- f. Lower bound 和 upper bound 项依次设置为 0.7, 1.3。
- g. 点击 OK 键确定。

3. 设置 A 区设计变量 DV2

- a. 选择设计参数类型为 FEShape2: Cylindricaldistance。点击 Create 键,填写 设计参数。
- b. 结点集: A 区 BR

- c. Configuration design 项选择 off。
- d. Reference marker 项设置为 importbody3. Marker2。
- e. Center Axis 项设置为 0, 0, 1。
- f. Lower bound 和 upper bound 项依次设置为 0. 8, 1. 2。
- g. 点击 OK 键确定。

FEShape2 : Cylindrical Distance				
Name	DP2			
Node Set	FFlexBody1.BR N			
Configuration Design	OFF 💌			
Center Ref. Marker	ImportBody3.Marker2 M			
Center Axis	0, 0, 1. D			
Current Value	1.			
Lower Bound	0.8			
Upper Bound	1.2			
Description				
DP Form	Scale 🔻			
ОК	Cancel			

4. 设置 B 区设计变量 DV3, 4

- a. 选择设计参数类型为 FEShape1: Translationalrelation, 然后点击 Create 键, 将会弹出如下图所示的 FEShape1: Translational relation 窗口。
- b. 结点集: B 区 PY。

- c. Configuration design 项选择 off。
- d. Reference marker 项设置为 Flexbody1. CM。
- e. Directional unit vector 项设置为 0, 1, 0。
- f. Lower bound 和 upper bound 项依次设置为: 0.7, 1.3。
- g. 点击 OK 键确定。
- h. 重复以上步骤设置 DV4, DV4 的结点集设置为 NY, 其他相同。

FEShape1 : Translatio	nal Relation
Name	DP3
Node Set	FFlexBody1.PY N
Configuration Design	OFF 💌
Reference Marker	FFlexBody1.CM M
Directional Unit Vector	0, 1., 0 D
Current Value	1.
Lower Bound	0.7
Upper Bound	1.3
Description	
DP Form	Scale 💌
ОК	Cancel

FEShape1 : Translational Relation				
Name	DP4			
Node Set	FFlexBody1.NY N			
Configuration Design	OFF 💌			
Reference Marker	FFlexBody1.CM M			
Directional Unit Vector	0, 1., 0 D			
Current Value	1.			
Lower Bound	0.7			
Upper Bound	1.3			
Description				
DP Form	Scale 💌			
ОК	Cancel			

- 5. 设置 D 区设计变量 DV5,6
 - a. 选择设计参数类型为 FEShape1: Translational relation, 然后点击 Create 键, 填写设计参数。
 - b. **D**区**DV**5结点集:**NZ**。

- c. Configuration design 项选择 off。
- d. Reference marker 项设置为 Flexbody. CM。
- e. Directional unit vector 项设置为 0, 0, 1。
- f. Lower bound 和 upper bound 项依次设置为:0.6,1.4。
- g. 点击 OK 键确定。
- h. 重复以上步骤设置 DV6, DV6 的结点集设置为 PZ, 其它相同。

FEShape1 : Translational Relation			
Name	DP5		
Node Set	FFlexBody1.NZ N		
Configuration Design	OFF 💌		
Reference Marker	FFlexBody1.CM M		
Directional Unit Vector	0, 0, 1. D		
Current Value	1.		
Lower Bound	0.6		
Upper Bound	1.4		
Description			
DP Form	Scale 💌		
ОК	Cancel		

i.

FEShape1 : Translational Relation			
Name	DP6		
Node Set	FFlexBody1.PZ N		
Configuration Design	OFF 💌		
Reference Marker	FFlexBody1.CM M		
Directional Unit Vector	0, 0, 1. D		
Current Value	1.		
Lower Bound	0.6		
Upper Bound	1.4		
Description			
DP Form	Scale 💌		
ОК	Cancel		

定义分析响应

2

为了设计连杆,分析响应为质量和应力

Create Insert	FE Result 💌	Delete
	FE Result Scope	OK Cancel Apply
	ProcessNet	

- 2. 点击 Create 键, 弹出如下图所示的分析响应 FE Result 窗口
- 3. 设置压力的分析响应参数
 - Name: AR1 a.
 - Result type: Stress (NodeSet) b.
 - Stress (Node Set) : c. FF1exBody1. Stress
 - Response treatment: Max Value d.
 - Description:VonMises Stress e.
 - f. OK.

Analysis Response - FE	Result
Name	AR1
Stress (NodeSet) 💌	FFlexBody1.Stress EL
Treatment	Max Value 🔻
Description	VonMises Stress
ОК	Cancel

- **4.** 点击 **Create** 键, 弹出如右图所示的分析响 应 **FE Result** 窗口
- 5. 设置质量的分析响应参数
 - a. Name: AR2
 - b. Result type: Mass (ElementSet)
 - c. Mass (Element Set) : FF1exBody1. Mass
 - d. Description: Mass
 - e. OK

Analysis Response - FE	Result
Name	AR2
Mass (ElementSet) 💌	FFlexBody1.Mass EL
Treatment	Initial Value 🔻
Description	Mass
ОК	Cancel

运行优化设计

优化的主要内容是:在最小化连杆质量的同时,保证: 连杆应力≤允许极限应力值。

1. 点击 **Design Optimization** 菜单,就可以看到先前的设计变量列表 **DV**1 至 **DV**6, 如下图:

D	Design Optimization								
D	esign Var	iable Performance I	Index Optimization	Control Res	ult Sheet S	ummary Sheet]		
	DV	DP	Description	Current	LB	UB	Туре		Value
	1	DP1		1.	0.7	1.3	Variable	-	0.
	2	DP2		1.	0.8	1.2	Variable	-	0.
	3	DP3		1.	0.7	1.3	Variable	-	0.
	4	DP4		1.	0.7	1.3	Variable	-	0.
	5	DP5		1.	0.6	1.4	Variable	-	0.
	6	DP6		1.	0.6	1.4	Variable	•	0.

2. 点击 Performance Index 选项,可以看到下图。如果该窗口是空的,请创建 PIs。

D	esign O	ptimiza	tion								
[)esign Va	riable	Performar	ice Ir	Idex Optimization Cor	ntrol Result Sheet	Summa	ary Sheet			
	PI	Use	AR		Description	Definition		Goal		Weight/Limit Value	
										-	
	1		AR1	•	VonMises Stress	Constraint	-	LE	-	114.	

3. 点击 Optimization Control 选项,直接使用默认值。然后点击 Execution 键,可以 看到设计公式的总汇。检查设计变量、性能指标和元模型的信息。如果所有信息 是正确的,点击 OK 键,开始运行优化过程

	Performance Index	Optimization Control	Result Shee	et Summary	/ Sheet		
DOE Meta M	lodeling Methods				Me	thods	
Convergence	Tolerance						
Objective C	hange Rate in Consec	utive Iterations			5.e-02		
Equality Co	nstraints				1.e-03		
Inequality C	onstraints				1.e-03		
Maximum It	Maximum Iteration of SAO						
Convergen	e Relaxation Control				OFF		
Simulation	lype				Dynamic/Kinematic	•	
	Analysis Set	ting			Execution		
	Analysis Set	ting			Execution		

	DV	Description	Current	LB	UB	Туре		Value
1	DP1	UR	1.	0.7	1.3	Variab	le	0.
2	DP2	BR	1.	0.8	1.2	Variab	le	0.
3	DP3	PY	1.	0.7	1.3	Variab	le	0.
4	DP4	NY	1.	0.7	1.3	Variab	le	0.
5	DP5	NZ	1.	0.6	1.4	Variab	le	0.
2		MNG						
2		Anz						
2		ANZ						
2		AIL			,			
2 ta - N	Aodel	AILE						
2 ta - N	Nodel	ANL						
2 ta - N	/lodel	Method	in	complete S	imall Composite I	Design -2		
2 ta - N Ir M	Model nitial DOE I eta-Model	Method Method	In Radia	complete S I Basis Fun	imall Composite I ctions Model(Mu	Design -2 Iti-Quadratic)	
2 ta - N Ir M	Model hitial DOE I eta-Model Polynomin	Method Method al Type	In Radia	complete S I Basis Fun	imall Composite I ctions Model(Mu Auto	Design -2 Iti-Quadratic)	

4. 当优化过程完成后,其 result sheet 选项窗口会自动弹出。优化过程只进行四次迭代收敛,因此,AutoDesign 只做了 14 次分析去解决有 5 个设计变量的连杆系统,其中包括 9 次初始条件分析。最后的优化设计结果显示 AR1=113.96Mpa 和 AR2=1.458kg,表示在应力处于允许的范围内(小于 114Mpa)质量可以减小 58 %。

No	DV	Description	Current	LB	UB	Туре		Value
1	DP1	UR	1.	0.7	1.3	Variab	le	0.
2	DP2	BR	1.	0.8	1.2	Variab	le	0.
3	DP3	PΥ	1.	0.7	1.3	Variab	le	0.
4	DP4	NY	1.	0.7	1.3	Variab	le	0.
5	DP5	NZ	1.	0.6	1.4	Variab	le	0.
No 1 2		AR AR1 AR2	VonMises Str Mass	ess	Constraint Objective	LE MIN	weight	114. 1.
No 1 2		AR1 AR2	VonMises Str Mass	ess	Constraint Objective	LE MIN	weight	114. 1.
No 1 2 eta - M	Model	AR AR1 AR2	VonMises Str Mass	ess	Constraint Objective	LE MIN	weight	114. 1.
No 1 2 eta - N	Nodel	AR AR1 AR2 Method	VonMises Str Mass	ess complete S	Constraint Objective imall Composite	LE MIN Design -2		114. 1.
No 1 2 eta - N Ir M	Model nitial DOE eta-Model Polynomir	AR AR1 AR2 Method Method al Type	VonMises Str Mass Ir Radia	ess icomplete S I Basis Fun	Constraint Objective imall Composite I ctions Model(Mu Auto	LE MIN Design -2 Iti-Quadratic		114. 1.

5. 优化结果汇总在设计变量和分析响应列表中。同时也汇总 SAO 相关信息, SAO 运行了 5 次。优化设计的分析结果保存为 'DO_005' 文件。

sign Variable	Performance Index	Optimization C	ontrol Result Shee	t Summary She	et			
esign Variabl	es							
No	Name	Description	Optimum	Current	LB	UB		
1	DP1	UR	0.83881831453	1.	0.7	1.3		
2	DP2	BR	0.8	1.	0.8	1.2		
3	DP3	PY	0.7	1.	0.7	1.3		
nalysis Respo	onses							
No	Nam	ie	De	scription		Optimum		
1	AR	1	VonN	/lises Stress	1			
-	4.01	-	Mass		1	1 45800523533158		
2 erformance Ir No	ndexes AR	De	escription	Definition	Goal	Weight/Limit Value		
2 erformance li	ndexes			IVIG33				
2 erformance lr No 1	AR AR AR	De VonI	escription Vises Stress	Definition Constraint	Goal	Weight/Limit Value		
erformance li No 1 2	AR AR AR AR1 AR2	Z De Vont	escription Mises Stress Mass	Definition Constraint Objective	Goal LE MIN	Weight/Limit Value 114. 1.		
2 erformance Ir No 1 2	AR AR AR1 AR2	De Vont	escription Alises Stress Mass	Definition Constraint Objective	Goal LE MIN	Weight/Limit Value 114. 1.		
2 erformance Ir No 1 2 SAO Initial DOE N	AR AR AR AR1 AR2 Incomplete S	De Vont	escription Alses Stress Mass Design -2	Definition Constraint Objective	Goal LE MIN	Weight/Limit Value 114. 1.		
2 erformance la No 1 2 SAO SAO Meta - Mode	AR AR AR AR AR AR2 Itthod Incomplete S	imall Composite	Aises Stress Mass Design -2 el(Multi-Quadratic)	Definition Constraint Objective Polynomi	Goal LE MIN nal Type	Weight/Limit Value 114. 1. Auto		
2 erformance It No 1 2 SAO Initial DOE N Meta - Mode Initial Sampl	AR AR AR AR AR AR2 Itethod Incomplete S I Radial Basis e Runs 9	imall Composite Functions Mode SAO	Alses Stress Mass Design -2 el(Multi-Quadratic) 5(0)	Definition Constraint Objective Polynomi Total Eval	Goal LE MIN nal Type uations	Weight/Limit Value 114. 1. Auto 14		
2 erformance Ir No 1 SAO SAO Initial DOE N Meta - Mode Initial Sampl Optimal Des	AR AR AR AR1 AR2 Incomplete S It Radial Basis e Runs 9 E:SVN/GT/Tr	imall Composite Functions Mode SAO unk'AddFile\Tut	Alses Stress Mass Design -2 el(Multi-Quadratic) 5(0) orial\10.AutoDesign	Definition Constraint Objective Polynomi Total Eval	Goal LE MIN nal Type uations odShape\Con	Weight/Limit Value 114. 1. 1. Auto 14 nnectingRodShape_Ch4_		

分析结果对比

最后,在质量和应力上对原始设计与优化设计进行对比,SAO5 是优化设计,DOE005 是原始设计。以下就是其对比结果。

	The initial design	The optimal design
Mass (Kg)	3.478	1.458
Stress (Mpa)	71.3	113.96

感谢学习本教程!